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ABSTRACT

This paper uses high-resolution images of nighttime luminosity to estimate a globally comparable
measure of the size of metropolitan areas around the world for the years 2000 and 2010. We
apply recently-proposed methodologies that correct the known problems of available nighttime
luminosity data including blurring, instability of lit pixels overtime and the reduced comparability
of night light images across satellites and across time. We then develop a protocol that isolates
stable nighttime light pixels that constitute urban footprint, including low luminosity urban
settlements such as slums, and excluding confounding phenomena such as highway illumination.
When analyzed together with existing geo-referenced population datasets, our measure of urban
footprint, can be used to compute city densities for the entire world. After characterizing some
basic stylized facts regarding the distribution of urban sprawl, urban population and population
density across world regions, we offer an application of our measure to the study of the size
distribution of cities, including test of the Zipf's Law and Gibrat's Law.
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RESUMEN

Este trabajo usa imagenes de alta resolucion de luminosidad nocturna para estimar una medida
del tamafio de las areas metropolitanas de todo el mundo, comparable globalmente, para los
afios 2000 y 2010. Utilizamos metodologias recientemente propuestas que corrigen los
problemas de los datos de luminosidad nocturna, incluyendo borrosidad, inestabilidad de pixeles
de luz a lo largo del tiempo y baja compatibilidad de las imagenes de luz nocturna entre satélites
y en el tiempo. Después desarrollamos un protocolo que identifica pixeles de luz nocturna
estables que constituyen huella urbana, incluyendo asentamientos urbanos de baja luminosidad
como asentamientos informales, y excluyendo fendmenos como la iluminacion de autopistas
interurbanas. Cuando se analiza en conjunto con bases de datos existentes de poblacion geo-
referenciada, nuestra medida de huella urbana puede ser usada para calcular densidades
urbanas para todo el mundo. Después de caracterizar algunos hechos estilizados basicos sobre
la distribucion de la huella urbana, de la poblacién urbana y de la densidad poblacional en todas
las regiones del mundo, este trabajo muestra una aplicacion de nuestra medida al estudio de la
distribucion de tamafio de las ciudades, incluyendo tests de la Ley de Zip y la Ley de Gibrat.

Small sections of text, that are less than two paragraphs, may be quoted without explicit permission as long as this
document is stated. Findings, interpretations and conclusions expressed in this publication are the sole responsibility of
its author(s), and it cannot be, in any way, attributed to CAF, its Executive Directors or the countries they represent. CAF
does not guarantee the accuracy of the data included in this publication and is not, in any way, responsible for any
consequences resulting from its use.

© 2018 Corporacion Andina de Fomento

MEASURING THE SIZE AND GROWTH OF CITIES USING NIGHTTIME



Measuring the Size and Growth of Cities Using
Nighttime Light*

Rafael Ch' Diego A. Martin? Juan F. Vargas®

September 20, 2018

Abstract

This paper uses high-resolution images of nighttime luminosity to estimate a glob-
ally comparable measure of the size of metropolitan areas around the world for the
years 2000 and 2010. We apply recently-proposed methodologies that correct the
known problems of available nighttime luminosity data including blurring, instabil-
ity of lit pixels overtime and the reduced comparability of night light images across
satellites and across time. We then develop a protocol that isolates stable night-
time light pixels that constitute urban footprint, including low luminosity urban
settlements such as slums, and excluding confounding phenomena such as high-
way illumination. When analyzed together with existing geo-referenced population
datasets, our measure of urban footprint, can be used to compute city densities
for the entire world. After characterizing some basic stylized facts regarding the
distribution of urban sprawl, urban population and population density across world
regions, we offer an application of our measure to the study of the size distribution
of cities, including test of the Zipf’s Law and Gibrat’s Law.
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1 INTRODUCTION

The process of economic growth usually involves structural changes, of which urbanization
is the most important one (Kuznets|1968)). In fact, for many social scientists urbanization
is the hallmark of economic development. For example, in the absence of historical
information on per capita income, several authors have used historical urbanization rates
as a proxy of economic prosperity.ﬂ This implies that cities, as nuclei of the urbanization

process, are the main drivers of economic growth.

But what is a city? Conceptually, cities -or metropolitan areasﬁ are the spatial inte-
gration of social and economic activity, and the higher the geographical concentration of
households and firms, the greater the potential economic benefits net of congestion costs
(Duranton & Puga 2004, Rosenthal & Strange| 2004, Duranton & Turner|2011). How-
ever, in spite of our relatively consensual theoretical understanding of cities, its empirical
measurement has proven more challenging. Empirical definitions usually rely on admin-
istrative borders, which generally transcended by the physical space where interactions

between economic and social agents occur.

This implies that stylized facts about patterns of urbanization across countries are likely
to be biased because of measurement error (Roberts et al. 2016|), which may partly
explain, for instance, why the available cross-country estimates of the Zipf’s Law are
not robustf| As put by [Duranton & Pugal (2004) “[TJhe empirical validity of Zipf’s
Law is hotly debated” (p.833), and the cross country evidence (Rosen & Resnick 1980,
Soo| 2005) has been interpreted both for and against the Zipf’s Law. Chauvin et al.
(2017)), for example, test the existence of the Law in Brazil, China, India and the US,
using respectively micro-regions, cities, districts and metropolitan areas, heterogeneous

measures whose comparison the authors recognize as “debatable” (p.20).

In this paper, we introduce a novel methodology to translate the concept of city into a
standard measurement of urban sprawl that relies on almost no methodological assump-
tion and is independent of country-specific administrative criteria of city limits, allowing

for global comparisons.

Specifically, following recent remote sensing and economic development literature -reviewed

by Donaldson & Storeygard| (2016)-, our measure leverages on the availability of satellite

1See, for example, | Acemoglu et al. (2002) and Dittmar (2011). The historical urbanization data are
estimated by |Bairoch| (1991)).

2For simplicity, in this paper we refer to cities and metropolitan areas interchangeably. Our data-
driven measure or urban agglomeration is arguably closer to what the latter are.

3Country-specific measures of cities or metropolitan areas are based on arbitrary thresholds, many
of which depend on the quality of local censuses. Since the latter depends on state and administrative
capacity, country-specific measurement error is likely correlated with the level of development, and thus
it is potentially non-classical.



images of night lightsﬁ We adopt two main steps (see section 2 for details): First, night-
time light data is cleaned and processed. Second, processed light pixels are classified to
identify the existence of a city and its extension. The first step recognizes that night-
time light data suffers from several sources of measurement error, which we correct by
combining insights from a large body of literature on remote sensing (Imhoff et al.|[1997,
Elvidge et al.[2009, |Liu et al.[2012, |Abrahams et al. 2018)ﬂ Importantly, we do not claim
any improvement on the remote sensing methodological literature. Rather, we provide
a systematic and replicable algorithm on how to correct several sources of potential bias

for the specific purpose of classifying and identifying lit pixels as urban areas or not.

The second step classifies metropolitan areas as spatial conglomerates of 1 km? nighttime
stable lit pixelsﬁ As a result, we end up with a geo-referenced dataset of the location and
sprawl of 2,677 (3,072) metropolitan areas with more than 100,000 inhabitants (typically
encompassing two or more neighboring cities that are economically integrated) in 2000
(2010) for the entire world (see Table 1).

Based on the Spanish acronym of Metropolitan Areas Extension Database (Base de Fz-
tension de Areas Metropolitanas), we call our resulting data BEAM BEAM is highly
precise, as suggested by multiple cross-validation procedures and comparison with other
measures of urban expansion, available for specific cities of the world, such as those based

urban built-up and coverage (see Appendix)ﬁ

Our globally comparable dataset can be further overlaid with existing geo-referenced
population datasets in order to estimate urban population and population growth, and
compute city-wide densities. In fact, we compare the distribution of urban sprawl, urban
population and population density across world regions and document several robust
stylized facts (see section 3). In particular, while the distribution of urban population

in cities larger than 100,000 people is relatively similar across regions, regardless of their

4Nighttime light has been shown to be a reliable proxy for economic activity both nationally and in
geographically small areas (Henderson et al.[2011, Bleakley & Lin|[2012, [Michalopoulos & Papaioannou
2013l |Lowe||2014, [Storeygard|2012, [Weidmann & Schutte 2016} [Pinkovskiy|[2013], |(Goldblatt et al.||2018]).
This implies that it can be used to identify geographically integrated economic markets, thus linking our
practical and conceptual definitions.

5In particular, we correct censoring problems using a simple clipping procedure, apply a deblurring
filter in order to compute an unbiased sprawl for each city/satellite-year, and adjust the instability of
lit pixels overtime and between satellites due to differences in satellite-specific crossing times, sensors’
degradation and geographic misalignment.

6 A stable pixel is defined as one that shows up in the satellite-based nighttime images more than 20%
of the time. The stability of the pixel is necessary to remove ephemeral lights including cars and other
types of spurious bright sources, but takes into account low luminosity areas including peripheral city
slums.

"Conveniently, beam also means ray of light in English.

8 An older version of BEAM, which did not include all the correction procedures described in section
2, and that was only available for a subset of regions of the world, was used as an input for the 2017
Report on Economics and Development, the flagship report of CAF-Development Bank of Latin America,
which funded this research.



level of development, average urban sprawl is larger in developed countries, especially in
North America. This implies that population density is higher in developing countries.
This is an important fact, as it suggests that developing countries are not fully able to take
advantage of agglomeration economies to translate higher density into higher economic

growth.

In addition to providing details about the computation on BEAM and describe these basic
stylized facts, we illustrate the advantages of this measure by revisiting some facts recently
highlighted by |Chauvin et al.| (2017) about the size distribution of cities in developed and
developing countries. We do so both for the same set of countries used in that article
-the U.S., Brazil, China and India-, and for the entire world. Zipf’s Law predicts that the
relationship between the log of cities’” population and the log of cities’ population rank
is equal to -1/ Our estimated coefficients of this relationship are consistently smaller
in absolute value than those of (Chauvin et al.| (2017) -with the exception of China- and
smaller than Zipf’s Law prediction. This implies that, in the four countries analyzed by
these authors, as the population rank falls cities are larger than what it is predicted by the
Law, a results that is not consistent with the largest city in each country exerting some
sort of primacyll| This is consistent with our estimates of Gibrat’s Law, which relates
the initial population of cities with their inter-period growth rate. For every region, we

find that smaller cities are growing faster than the largest cities.

The rest of the paper is organized as follows. Section 2 discusses several measures used
in the literature to estimate the size and sprawl of metropolitan areas, and describes
the methodology, including the data problems, the data cleaning procedure and the pixel
classification into urban conglomerates used in this paper. It also includes a brief descrip-
tion of how population counts can be used as an ex-post estimation procedure. Section
3 summarizes world-level stylized facts regarding the distribution of city sprawls, urban
population and population density. Section 4 revisits some of the stylized facts reported
by (Chauvin et al.| (2017) using comparable data for the whole world, thus establishing

some basic patterns of the size distribution of cities. Section 5 concludes.

2 MEASURING THE SPRAWL AND SIZE OF METROPOLITAN AREAS

Increasing urbanization rates have highlighted the need to re-define urban areas and ex-
plore methodologies to accurately approximate the size of cities and to measure urban
sprawl. As cities grow, political administrative boundaries become obsolete to define

metropolitan areas in a way that is consistent with modern urban patterns. While the

9This implies that a city in the n*" rank of population size is expected to have 1/n the population of
the largest city, thus following a power law.
0This is also what (Chauvin et al|(2017) find for the U.S. and China.



U.S. introduction of Metropolitan Statistical Areas (MSAs) in the 50s established a gen-
eral benchmark that was followed by other high income countries, many developing coun-
tries still lack institutional definitions for metropolitan areas, and thus rely heavily on
administrative boundaries and simple aggregation procedures that are often at odds with

patterns of urbanization.

There are at least three broad approaches used to define the extent and size of cities.
First, the use of administrative geographic units aggregated through various iterative ap-
proaches given different thresholds, for instance minimum population counts or minimum
density levels. In some cases, administrative units are agglomerated if they are contiguous
and economically integrated, as in the case of Brazil, where contiguous municipalities are
integrated into microregions conditional on having similar economic features, according to
the Brazilian Institute for Geography and Statistics. However, non-comparability arises
as countries define “integration” and “contiguity” differently, and use arbitrary thresh-
olds. This is exacerbated by dissimilar historical paths determining how the smaller
administrative units came to be in terms of size and shape. The latter is particularly
problematic since the smallest administrative units might comprise both rural and urban
areas, thus leading to over or underestimation of the size of metropolitan urban areas.
In general, as the smallest administrative units increase in area, so does the bias towards

including rural areas.

A second approach relies on commuting patterns, understanding metropolitan areas as
integrated labor markets. In most developed countries, census data tracks commuting
patterns by asking respondents about the location of their residence and that of their
job. Most studies that use this approach predefine metropolitan cores using ancillary
population data, and then use commuting patterns to determine how to aggregate it.
More recently, however, Duranton (2015|) showed that there is no need to rely on pre-
defined urban cores by proposing an algorithm to delineate metropolitan areas based

solely on commuting thresholds.

However, reliable data on commuting patterns is not available for most countries, espe-
cially developing ones. Moreover, while commuting patterns portrait the reach of labor
markets, they leave aside input-output linkages which might cover wider areas, or knowl-

edge spillovers which tend to revolve around shorter distances[']

Note that both the administrative unit agglomeration and commuting pattern approaches
rely on arbitrary thresholds. While some studies show that results hold when modifying
thresholds selection, most do not carry out such robustness checks. (OECD) (2012), for
instance, defines urban cores as high-density clusters of contiguous grid cells of 1 km? with

a density of at least 1,500 inhabitants per km?, but use a lower density threshold of 1,000

HFor a discussion on the topic see [Duranton/ (2015).



people per km? for Canada and the United States given that, in such countries “several
metropolitan areas develop in a less compact manner” (OECD| (2013)) p. 3). These data

processing choices makes cross-country and regional inference non fully comparable.H

In response to the weaknesses of the first two approaches, recent work has moved towards
a more harmonized definition of cities and rural areas based on the use of geo-referenced
population datasets. Uchida & Nelson/ (2008), for instance, developed the agglomeration
method which relies on population size and density thresholds and a travel time radius of
a “seizable” settlement, to define a citym In turn, Dijkstra & Poelman| (2014)) followed a
spatial approach and developed a cluster method defining two types of urban areas: high
density clusters, with threshold values of 1,500 inhabitants per km? and 50,000 people,
and urban clusters, with thresholds of 300 inhabitants per km? and 5,000 people.

This suggests that the geo-referenced data approach suffers from similar drawbacks as
the other approaches, as it still relies on contiguity criteria as well as on thresholds that
are subject to arbitrariness (see Roberts et al.| (2016)) for a discussion). Another pitfall
that is common to all approaches is the perpetration of sources of measurement error
along the construction process. For instance, the existing methods take into account
national definitions of urban areas which are not comparable across countries and time;
geo-referenced population datasets depend on census and therefore rely on each country’s

census minimum collection unit size, which determine the data’s spatial resolution.E

More recently, and to overcome the drawbacks of the traditional approaches to measure
city size and urban sprawl, researchers have started to use remote-sensing techniques.
The next sub-section focuses on the use of the incidence of light at night to delineate the

size and shape of cities.

12 Another not so common approach to define metropolitan areas relies on non-economic criteria in-
cluding concepts such as “sense of belonging”, as captured through survey data.

13To that end, Uchida & Nelson| (2008) used data from the Center for International Earth Science
Information Network’s (CIESIN), the Global Rural-Urban Mapping Project (GRUMP) and Landscan
geo-referenced population datasets.

4One example is the Gridded Population of the World database (GPW), produced by the Socioeco-
nomic Data and Applications Center (SEDAC) from NASA, and hosted by CIESIN. The data rely on an
areal-weighting method (known as uniform distribution or proportional allocation method) to disaggre-
gate population from census units into grid cells through the simple assumption that the population of
a grid cell is an exclusive function of the land area within that pixel (Doxsey-Whitfield et al.|2015). The
first disadvantage of using an areal-weighting disaggregation method is that “the precision and accuracy
of a given pixel is a direct function of the size of the input areal unit. Consequently, for countries where
the input units are quite large, the precision of population estimates for individual pixels within that
unit can be degraded” (Lloyd et al.|2017)). For example, the average input unit resolution for devel-
oped regions in the GPW data (version 4) is 944 km?. Contrast that with an input unit resolution of
3,518 (4,700) km? for middle-income (developing) regions (de Sherbinin & Adamo|[2015). Accuracy is
thus proportional to development and this introduces measurement error bias. To tackle this problem,
CIESIN developed the Global Rural Urban Mapping Project (GRUMP) which, pretty much in the spirit
of BEAM, assigns population over grid cells according to nighttime light data. However, GRUMP does
not perform all the necessary corrections to the nighttime light data which we describe in this section,
thus introducing bias to the estimates.



2.1 REMOTE SENSING APPROACH AND THE USE OF NIGHTTIME LIGHT TO MEASURE
URBAN SPRAWL

Satellite imagery and remote sensing techniques have been widely used to measure physi-
cal quantities related to urbanization and urban footprint. For instance, Burchfield et al.
(2006) used satellite imagery of land cover and land use in U.S. from 1976 to 1992 to
build boundaries of contiguous areas with similar land cover. They find that the extent of
land use remained roughly unchanged during this period. More recently, |Saiz (2010) used
satellite-generated data on terrain elevation and presence of water bodies to estimate the
amount of developable land in U.S. metropolitan areas, and found that inelastic housing

supply is highly correlated with geographical constraints.

Perhaps the most important contribution to cross-country comparisons of urban footprint
using satellite imagery is the Atlas of Urban Expansion (AUE), produced by the Marron
Institute of Urban Management at NYU, in collaboration with UN-Habitat and the Lin-
coln Institute of Land Policy. AUE uses high resolution satellite imagery together with
disaggregated census data to estimate, for 200 cities in the world, urban footprint, urban
built-up area, population density and several indicators that characterize the specificities
of the urban outlook of cities. These include including the shares of urban infill, leapfrog,
and extension for the years 1990, 2000 and 2014 (Angel et al.|2012]).

While valuable and highly precise, the approach followed by the AUE is extremely costly.
There are two reasons for this. On the one hand, AUE uses as input various sources of
information, including high resolution satellite images from Landsat and Google Earth,
disaggregated census data, and specific surveys obtained from local researchers measuring
different land uses, property regimes, affordability of housing and attributes of properties
available for sale or rent. On the other, producing the detailed portfolio of AUE indicators
is computationally demanding. This may partly explain the reduced sample of cities.
Furthermore, as with former approaches, census and land use data cannot be pooled to
provide suitable comparable observations due to national differences on census methods,

accuracies and capture times.

One alternative is to use the Nighttime Light longitudinal data available from the De-
fense Meteorological Satellite Program (DMSP) of the National Center for Environmental
Information (NOAA). DMSP satellites take cloud-free annual composites images to pro-
duce digital remotely sensed images of the world’s light, that unlike a photograph, can be
manipulated to extract information[l’] Each image corresponds to a 30 arc-second pixel
(roughly 1 km? at the equator) containing a specific Digital Number (DN). The DN is

assigned according to the pixel luminosity, and varies between 0 to 63.

15Satellite images take into account only persistent lighting, thus discarding ephemeral events including
fires.



Among other uses, nighttime luminosity can help predicting urban Settlementsm This

has been done at least since Elvidge et al|(1997)). Indeed, night lights have been shown to

correlate accurately with population density in the U.S. (Sutton et al.|1997), to identify
urbanization rates (Imhoff et al||1997), to estimate global population counts (Sutton

1999), and even to single out low density settlements (Elvidge/[2000). Moreover, the

use of night-time satellite imagery to derive urban boundaries has been validated both

for developed and developing countries (Henderson et al.[2003)), and several studies have

used this tool to study urbanization changes at different geographical scales (see [He et al]
(2006), |Zhang & Seto| (2011) and |[Liu et al.| (2012)), among others). (2017) used

night-time lights to classify the shape of Indian cities and found that city compactness is

correlated with lower wages and higher housing rentSE

Nighttime luminosity can be combined with high resolution Landsat images for more
accurate predictions of urban construction and population counts. For instance, Landsat
images can be used to extract green areas and bodies of water to refine the measures
derived from night lights (see the work of Goldblatt et al. (2018]) for India, Mexico and
the U.S.).

However, nighttime light data suffers from a series of problems that, in the absence
of the appropriate corrections, affect its reliability and comparability across space and
time (Elvidge et al.|2009, Liu et al|2012, Zhang & Seto 2011} |Abrahams et al.2018]).

For instance, factors such as the exact position of satellites at the time of capturing

the information, and the satellite-specific degradation of the capturing sensors imply
that recorded images can suffer from misalignment within a satellite across time, and
across satellites within the same year, making DN values vary for reasons other than the
actual luminosity intensity of pixels In addition, nighttime light suffers from blurring,
which means that light “overglows” and cities seem to be bigger than they actually are,

especially if they are more luminous (because of higher economic activity).

The literature has proposed several ways to address each of these issues, albeit in a

decentralized fashion. For instance, to address the overglow problem, |Goldblatt et al.

(2018) utilize Landsat satellite imagery to cutoff the excess night light glowing beyond
urban built-up. However, this technique cannot fix the existent spatial correlation that

blurring causes among contiguous light pixels, and that is increasing with luminosity.

This issue is addressed by |[Abrahams et al| (2018), who develop a de-blurring procedure

I6High resolution luminosity satellite data has been used as a proxy for economic activity across
countries, at the sub-national level and for very small areas (Henderson et al.|2011} Bleakley & Lin|2012,
Michalopoulos & Papaioannoul[2013] [Martinez|[2018], [Lowe|[2014], [Storeygard|2012, [Weidmann & Schutte]
2016}, [Pinkovskiy|2013). The literature on night lights as a proxy for development is summarized by
Donaldson & Storeygard| (2016). These data have also been used, in conjunction with high-resolution
daytime satellite images and machine learning tools, to predict sub-national poverty .

ITFor a thorough discussion on the use of nighttime light data to evaluate urban coverage and change
see (Goldblatt et al.| (2018).




that does not rely on ancillary data such as LandsatH

An important contribution of this paper is to propose general and replicable procedure to
apply the known correction techniques while relying on minimal cleaning and processing
assumptions to estimate the urban sprawl of cities in the entire world. The next subsection

describes the data sources as well as the cleaning and processing procedure.

2.2 DAtTA

Following the conceptual definition of cities as the spatial integration of social and eco-
nomic activity, as well as the growing literature on how night lights are strongly associated
with economic performance and development, this paper uses high-resolution images of
luminosity at night to compute the size of metropolitan areas for the entire world, in
2000 and 2010.

To this end, we rely on average visible nighttime light raster files and frequency images
provided by NOAAE Our methodology can be divided in three steps: i) the cleaning and
processing of nighttime light data; ii) the classification of pixels to define the existence

of a city and its extension; iii) The estimation of population zonal statistics.

2.2.1 Cleaning and processing nighttime light

DMSP nighttime light data suffers from blurring. Light spreads far beyond urban built-
up coverage, and brighter pixels generate larger blurs. We rely on (Abrahams et al.
2018)’s two-step deblurring filter, with a threshold of 20% minimum cloud-free nightsm
We apply this filter to each city/satellite-year and hence do not use a single deblurring

correction parameterﬂ

After deblurring the night light images, we apply a number of additional correction

18 A different approach to correct the blurring problem when measuring cities with night lights is to
use luminosity thresholds in an attempt to screen rural areas out. However, as discussed, thresholds are
arbitrary and data are not comparable when different thresholds are used for different regions, as in the
case of [Liu et al|(2012)).

19The raster images of interest are those from the F14-2000, F15-2000, F18-2010 satellites-years. We
do not rely on radiance-calibrated images given that, since we do not perform ant within-city inference,
we are not concerned about top-coding (the fact that high light values end up at the top of the 0-63
scale), but only about the emission of light above certain frequency threshold. Hsu et al.| (2015) discuss
how radiance-calibrated nighttime lights deal with top coding in high luminosity areas, such as city
centers.

20This threshold allows us to capture low luminous areas such as slums and other informal settlements,
but leaves out transitory lights from fires or road traffic, for example.

2n order to identify the areas where to apply the deblurring filter (thus potential cities), we clip cities
using the non-deblurred stable contiguous lit pixels of any given area (the procedures to obtain stable
pixels is explained below). While non-deblurred areas are, by definition, larger than the deblurred ones,
in general they follow the city’s shape.



procedures to ensure a reliable estimation of city sizes. First, because images recorded by
the same satellite may not be comparable across years, we apply Wu et al.| (2013)’s inter-
calibration procedure. Second, as noted by |Zhao et al.| (2015), nighttime light rasters of
different satellites (and of different years for the same satellite) tend to be shifted a couple
of pixels, reducing comparability across sources and over time. Following these authors,
we use a reference image (specifically that of satellite/year F142001) and shift all the
other nighttime lights rasters to fit it@ Lastly, comparing the information recorded by
two different satellites (F14 and F15) within a given year allows us to remove any intra-
annual unstable lit pixels.@ In addition, we assign to every stable lit pixel the average

DM value of the two satellites, hence producing an intra-annual stable composite for each

sample year ]

2.2.2 Pixel classification

We classify pixels into urban polygons according to the following process. First, we drop
all pixels with DN equals to zero (i.e., with no recorded luminosity); second, we classify
as a city any conglomerate of at least one km? of stable light pixels; third, we merge the
country shapefiles of Natural Earth and DIVA-GIS to assign cities to existing countries
and use the universe of cites identified by the AUE for year 2000 to assign city names to
our conglomeratesﬂ fourth, we clip water bodies (including both the ocean and inland
lakes)ﬁ Once we have the city polygon we can estimate city-level area and different

zonal statistics, including a calculation of the total population count in a given city.

2.2.3 Population zonal statistics

The urban sprawl polygon shapefile resulting from the pixel classification explained in the

previous section allows us to estimate a wide array of statistics within the boundaries of

22 As a result, Satellite/year F142000 is unchanged, F152000 is moved left 1 pixel and up 1 pixel, and
F182010 up 1 pixel.

23 A lit pixel is defined as an intra-annual unstable if it was detected with a positive DM by only one
satellite.

24Using the same procedure for inter-annual corrections assumes, as [Liu et al.| (2012), that cities
cannot reduce their size overtime. We consider this an unrealistic assumption that is not consistent with
experiences such as that of Detroit is the U.S., and that would then tend to overestimate the size of
cities.

25In several cases, estimated metropolitan areas are big enough to encompass two or more existing
cities. This is the case, for instance, of the metropolitan northeast corridor of the U.S., from New York
City to Washington D.C. We split this mega-metropolitan areas using the only processing assumption of
the paper (besides the use of a minimum percentage of cloud-free nights, see section 2.2.1): cities that are
adjacent are split if the width of the connecting processed light is less than 5 Km. Of course, a specific
researcher may want to avoid this arbitrary separation and work with the larger estimated metropolitan
area.

26More ancillary data could be use in the future to further define city shapes as done by |Goldblatt
et al.| (2018]).



the estimated metropolitan areas. Of those, population counts are particularly important.
Several population raster files exist to estimate population counts for a given city across
time.ﬁ In particular, we generate zonal statistics using the Landscan geo-referenced
population gridded raster files, for the years 2000 and 2010.@

As noted above, all geo-referenced population datasets rely on census or population data,
and thus entail comparability difficulties given differences in census minimum collection
unit size (spatial resolution) across countries. While Landscan cannot rule out completely
this potential source of bias, Stevens et al. (2015) and |Sorichetta et al. (2015) show
that Landscan’s mapping accuracy outperforms other geo-referenced population datasets,

particularly those that rely on the areal-weighting method explained above.@

Using Landscan, we estimate population counts and the average population density by
city. It is worth noting that we restrict the dataset to cities with more than 100,000
after estimating zonal statistics for two reasons. First, this ensures we exclude other light
emission zones such as oil refineries. Second, we are interested in revisiting stylized facts
about urbanization and the size distribution of cities (including Zipf’s Law -a right-tail
distribution law- and Gibrat’s Law) that have been recently studied using cities defined
with the same threshold (see, for instance, Chauvin et al.| (2017))).

The result of this three-step procedure is the Metropolitan Areas Extension Database,
called BEAM based on the Spanish acronym.

2.3 BENEFITS OF BEAM

This urban sprawl measure based on nighttime light data has several benefits in terms of
accuracy and empirical-computational practicality. First, it allows a comparable analysis
of stylized facts about urbanization across different regions of the world, with potentially
non-homogeneous administrative definitions of cities. Second, it does not rely on assump-
tions about people’s mobility (like the measures based on commuting patters). Third, the
methodology does not assume an arbitrary population density threshold, or a threshold

expressed in terms of time and number of travels@ Fourth, while the computational de-

2"The on line appendix of this [link| provides a description of the main geo-referenced population
datasets.

28 As a robustness test we also utilize the Global Human Settlement geo-referenced dataset. Results
are available upon request.

29This is because Landscan uses spatial data on land cover, roads, slopes, urban built up and village
locations to run a multi-variable model used to disaggregate census population counts within certain
administrative boundaries in a non-uniform way.

30For practical reasons, we do have a contiguity assumption when merging pixels. The other two
assumptions are the lit pixel stability threshold and the 5km threshold to split mega regions. While
the former is necessary to screen out ephemeral lights such as inter-urban highways that might not be
considered part of urban polygon, the latter can be lifted depending on the specific interests of the
researcher.
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mand of BEAM is still high, it differs substantially from that of other methods, including
the use of construction coverage. Fifth, our methodology also allows urban area identi-
fication without the need of administrative census data. Sixth, it does not establish a
population threshold ex-ante. Rather, the population count of an area is estimated after
the creation of the city’s urban extension. This guards BEAM from potential political
manipulation, a concern that arises when utilizing pre-defined urban cores, as noted by
Duranton| (2015]).

Lastly, and most importantly, luminosity has been extensively proven to be a reliable
proxy of economic activity, and so it allows us to identify clearly integrated urban mar-
kets. As noted for the case of Bogota by Duranton| (2015), the city is not officially
constituted as a metropolitan area even though there is no discontinuity with several
nearby municipalities, including large towns such as Soacha (in the south) and Chia (in
the north). The needed administrative integration does not, however, affect the econom-

ically relevant estimates of BEAM.

It should also be noted that the cleaning and pixel processing algorithm is transparent
and simple, and it is flexible enough to allow for changes that any researcher may consider
relevant. According to|Duranton| (2015)), transparency, clarity and flexibility are desirable
characteristics of these type of measures. Privileging computational practicality and
comparability across regions despite an arguably small cost in terms of accuracy, and
in order to being able to identify integrated labor markets instead of built-up coverage,
we chose not to complicate our measure by, for instance, subtracting green areas and

non-built up areas, unless they do not form part of the conglomerate of light pixels.

3 URBAN PopPULATION, CITY SIZE AND POPULATION DENSITY

Table [1] shows the number of metropolitan areas of at least 100,000 people estimated by
BEAM in 2000 and 2010, in each of the world’s regions, as defined by the World Bank [!1]
The total number of cities went from 2,677 in 2000 to 3,072 in 2010. Except for Europe
and Central Asia (ECA) the estimated number of cities increases over the decade-long
period@ The highest growth occurs in Sub-Saharan Africa (SSA, where the number of
metropolitan areas increases by almost 60%), followed by Middle East and North Africa
(MENA) and by South Asia (SA, in both regions the number of metropolitan areas
increases by 25%), East Asia and Pacific (EAP, with a 20% increase), Latin America and

31Regions in the Table are listed alphabetically.

32This is driven by Western Europe, where the estimated number of metropolitan areas decreases due
to the merger (in terms of nighttime light-pixel clusters) of several cities. This happens mainly in the
metropolitan area of London, in Belgium and Holland, in the Rhine area, and in northern Italy.

11



the Caribbean (LAC, 18%) and North America (NA, 8%) [ The region with the largest
share of metropolitan areas above 100,000 people in 2000 was ECA (28% of the total
number of estimated metropolitan areas). In 2010 it was EAP (27%, with ECA in the
second place at 23%).

Based on BEAM, in this section we report some basic stylized facts about urbanization.
This is made in relation to three dimensions: the spatial extent of cities or metropolitan
areas, urban population and population density, which is the ratio of population to area.
These are summarized in Figure [l Specifically, Panel A reports, through a box plot, the
distribution of the log of the size of metropolitan areas in each region, as estimated by
BEAME Regions are organized ascendantly according to the median size of metropolitan

areas in 2000.

EAP, SA and SSA were the regions with the lowest average city size in 2000 (and very
similar distributions with the exception of a few large outliers in EAP). MENA, ECA
and LAC had somewhat larger cities, and NA had significantly larger cities, compared
to any region. By 2010, the average size of EAP cities grew relative to SA and SSA and
became comparable to that of MENA and LAC. The average size of cities in ECA also
grew but NA cities continued to be the largest of the world.

As described in section 2, we overlay BEAM with the Landscan geo-referenced population
datasets for the years 2000 and 2010. This allows us to compute urban population levels
for the estimated metropolitan areas in every region. Interestingly, Panel B of Figure
shows that the distributions of urban population were remarkably similar across regions,
both in 2000 and 2010. Panel C, in turn, reports population density levels, which by
and large are the mirror image of urban sprawls, precisely because of the similarities in
urban population levels across regions: both in 2000 and 2010 EAP, SA and SSA were
the regions with the highest population density. MENA, ECA and LAC showed lower

values on average and NA was, by and large, the region with the lowest density.

The evidence presented in panel C of Figure [1| is consistent with the existence of a
negative association between population density and degree of development. This can
have two complementary explanations. On the one hand, increases in the average income
levels are associated with declines in urban density. This is explained by a positive
relationship between income and the demand for residential space. On the other hand,
the relatively high levels of density in developing regions may be a reflection of the recent,

accelerated and informal urbanization process, experienced by these regions in the mid-

33The World Bank classifies Mexico in LAC, and hence NA is constituted by the U.S. and Canada
only.

34The quantities of interest included in the box plot are: the median of the distribution (horizontal
line inside the box); the 25" and 75" percentiles (box limits); upper and lower adjacent value (box
whiskers, defined as the box upper (lower) limit + (-) 3/2 of the 75" to 25" percentiles gap); outliers
(values outside the whiskers).
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twentieth century. In fact, much of the high density of developing cities is explained by
the incidence of informal settlements (Jedwab & Vollrath/2017).

In the next section we use BEAM to study the size distribution of metropolitan areas

across world’s regions.

4 CITY SIZE DISTRIBUTION AND GROWTH

In this section, we use BEAM to study the size distribution of cities across different
regions of the world using a homogeneous, comparable measure. A commonly used tool
for this purpose is the so-called Zipf’s Law. In essence, the law states that, if we consider
the N cities from a country and sort them according to their size from 1 to N, the city
in position ¢ will have a population equal to that of the largest city divided by i. So,
the second city will have half the population of the first, the third, one third, and so on
(Gabaix|[1999d) 7]

Compliance with Zipf’s Law implies that cities’ growth process is independent of their
own size and is due to exogenous productivity shocks (Duranton & Puga 2014). If this
is true, then Gibrat’s Law -which states that the growth of urban areas is independent

from its size- also holds P

Zipt’s Law and Gibrat’s Law constitute an interesting reference point for a descriptive
analysis of the potential primacy of the largest cities within a country or region, as well
as the relationship between the size of cities and their growth rate. However, comparisons
across countries or regions are limited by the lack of homogeneous data (Duranton & Puga
2014)). For instance, in a recent paper, |(Chauvin et al. (2017) explore whether the known
facts about urbanization in the U.S. also hold in developing countries, specifically Brazil,
China and India. To this end, the authors include tests of Zipf’s Law and Gibrat’s Law,
comparing the four countries using different definitions of city’s extension, a limitation
the authors are aware of and upfront about when recognizing that the definitions used
are “debatable”, although probably the best available at the time of writing the paper

for the goal of creating a standard definition across different countries.m

35This is equivalent to saying that the size distribution of cities follows a power law, with a power
parameter equal to 1.

36Gabaix| (1999b) shows that if Gibrat’s holds then distribution of city sizes, in equilibrium, will be
consistent with Zipf’s Law.

3"The data sources used by (Chauvin et al| (2017) are: For the United States, the 2010 Consoli-
dated Metropolitan Statistical Areas, defined by the U.S. Census. For Brazil, microregions, composed
by agglomerations of contiguous and economically integrated municipalities that have similar economic
features, and defined by the Brazilian Institute for Geography and Statistics. For China, administrative
cities, including provincial-level and prefecture-level areas, which typically comprise both urban and
rural territories. For India, districts, the second-level administrative division of the country after states
and union territories. In the four countries, |(Chauvin et al. (2017 restrict the samples to urban areas
with 100,000 urban dwellers or more.
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In this section we review the descriptive analysis of |Chauvin et al. (2017)) for the case of
Zipf’s Law and Gibrat Law. However, in order to better understand the potential differ-
ences of BEAM with the data sources using by these authors, we start by reporting the
distribution of population across cities of different population size, both for the countries

studied by Chauvin et al.| (2017)) (Table and for all the regions of the world (Table
R

Table is equivalent to Table 1 of (Chauvin et al. (2017)). The distribution of people
living in the metropolitan urban areas of different sizes estimated by BEAM for the U.S.,
both in 2000 and 2010 is remarkably similar to what |(Chauvin et al.| (2017)) report for
the U.S. Metropolitan Statistical Areas (MSAs), as defined by the United States Office
of Management and Budget. This is because MSAs are conceptually much closer to the
object that BEAM measures using contiguous conglomerates of night light pixels, relative
to the definitions used by these authors for other countries@ Instead, the distribution
of people living in BEAM-estimated metropolitan urban areas of different sizes differs to
what (Chauvin et al.| (2017) report for Brazil’s “microregions” and China’s “cities”, and to
a lesser extent to what they report using India’s “districts”. These differences highlight

the importance of using a unified metric such as the proposed in this paper.

Table goes beyond the four countries analyzed by |(Chauvin et al.| (2017)) and reports
the distribution of people across metropolitan areas for all the regions of the world, using
the classification of the World Bank. NA is the region with the largest concentration of
people in the largest city size bin (cities with population larger than 1.5 million). In 2000
(2010), 47% (52%) of NA residents lived in these cities, followed by MENA and LAC with
44% (48%) and 29% (34%), respectively. In turn, SSA is the region with the smallest
concentration of people in the largest city size bin, with 8% (10%) in 2000 (2010).

If we aggregate the population living of cities smaller that 1.5 million people (in all bin
sizes starting from 100,000), the region with the largest share of people living in small
and medium cities is EAP, with 28% (27%) of the total population in 2000 (2010). At
the other end, the region with the smallest share of people in this type of cities is SSA
with 7% (8%) of the total population in 2000 (2010).

We now use BEAM to compute Zipf’s Law and Gibrat’s Law, both for the set of countries
studied by |Chauvin et al.| (2017) and for all the regions (and countries) of the world.

38 As described in section 2, we overlay BEAM with the Landscan geo-referenced population datasets
to compute urban population levels for the metropolitan areas estimated by BEAM.

39In the Appendix, we examine how BEAM compares with other measures, including MSAs. The
level of coincidence is 94%. The 6% discrepancy is mostly explained by the existence of MSAs with
metropolitan areas with less than 100,000 inhabitants, the threshold established by BEAM (see Figure
A-4)).
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4.1 Zipr’s Law

We test Zipf’s Law by estimating the relationship between the log of population of
metropolitan areas and the log of population rank[®] The law implies an estimated coef-
ficient equals to —1. A coefficient greater than —1 suggests that cities ranked lower than
the biggest are bigger than Zipf’s prediction and hence there is no evidence of primacy of
the main city. On the other hand, a coefficient less than —1 suggests that cities ranked
lower than the biggest are smaller relative to Zipf’s prediction, and there is evidence of

primacy of the main city in the city-size distribution within a country or region.

The results are reported in Figures and where we plot the cumulative distribution
of city sizes for cities larger than 100,000 people, together with the fitted lines of the
estimation procedure, applied to the 2010 BEAM sample. The first figure focuses on the
sample of countries of Chauvin et al.| (2017)) and the second looks at each one of the seven
regions defined by the World Bank. Below each sub-figure we report the coefficients from

the estimated equation model. The slope coefficient represents the Zipf’s Law test.

A comparison of Figure 2.1} with the equivalent Figure 2 of Chauvin et al] (2017) suggests
that, in the two exercises, the rank-size relationship is very similar for the cases of U.S.
and Brazil. But this is not true for China and India. In these countries, the rank-size
relationship reported by |Chauvin et al| (2017)) displays a strong non-linearity which is
not present using BEAM. This makes the fitted line of the Zipf’s Law test reported in

our paper a better representation of the true rank-size relationship.@

The estimated slope coefficients of the Zipf’s Law test applied, using BEAM, to the four
countries studied by [Chauvin et al] (2017) in 2000 and 2010, are reported in Table [3.1]
We also report the number of metropolitan areas larger than 100,000 people included in
each case. The 2010 coefficients are smaller than those estimated by Chauvin et al.| (2017)
for each country except China, and all are larger than —1 (smaller in absolute value).
This suggest that, in the four countries, as the population rank falls the population
is larger than what the Zipf’s Law predicts. Irrespective of the actual values, this is
also the conclusion of |(Chauvin et al.| (2017) with the exception of Brazil, for which their
estimated coefficient is —1.18, slightly smaller (larger in absolute value) than —1. Rather,

our estimated coefficient for this country is —0.91[?]

Because they imply that population rises too quickly as rank falls, our estimated coeffi-

40For comparability with |Chauvin et al.| (2017), we follow (Gabaix & Ibragimovi (2011)) and subtract
1/2 from the log of population rank. |Gabaix & Ibragimov| (2011)) use simulations to show that this is
a better estimate of the coefficient of the power law distribution of city size relative to the traditional
estimate.

41The rank-size relationship displayed in Figure for each one of the world’s seven regions is also
well fitted by the straight line of the Zipf’s Law test, with no apparent non-linearities.

42 And that estimated for 2000 is —0.96, very similar to the estimate, for the same year of [Soo| (2014]).
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cients are inconsistent with a potential primacy of the main city of these four countries.
Our estimates of Gibrat’s Law, reported in the next subsection, are consistent with this

finding.

This is also the case when we test Zipf’s Law at the region level (see Table . Out
of the seven world regions classified by the World Bank, only ECA (both in 2000 and
2010) has an estimated coefficient roughly equal to —1. In fact, our results using BEAM
suggest that, with coefficients equal to —1.06 in 2000 and —1.03 in 2010, ECA meets the
Zipfs’s Law.

The region-level estimates, however, mask some important variation across countries.
This point is apparent when examining Figure |[2.3] which plots over the same support the
estimated slope coefficients of the rank-size relationship of each country, together with
the 95% confidence intervals]|

A few regions have all or most their countries with coefficients consistently larger than
—1. This is the case, for example of EAP, NA, SA and SSA. Most countries in MENA
meet Zipf’s Law, except Saudi Arabia (SAU) where the coefficient is significantly larger
than —1, and Algeria (DZA), where the coefficient is significantly smaller (and thus the
population rises too slowly as rank falls, which is consistent with the primacy of Algiers).
In LAC countries, as the population rank falls the population is larger than what the
Zipt’s Law predicts, with the exception of Ecuador and Chile, which meet Zipf’s Law.

The most interesting case, however, is that of ECA. Recall from the region-wide test
that, with a coefficient equal to —1.03 in 2010, ECA was the only region with a size
distribution of cities consistent with Zipf’s Law. Figure [2.3) however, shows that this
is the result o a large variation across the region’s countries, with many of them having
estimated coefficients larger than —1, many other having coefficients smaller than —1,

and just a couple (Poland and Uzbekistan) actually being consistent with Zipf’s Law.

4.2 GIBRAT’S Law

Gibrat’s Law states that the growth of urban areas is independent from its size. If
bigger cities grew faster then they would tend to concentrate a larger share of population
and economic activity overtime, becoming a sort of urban black holes. Gibrat’s Law
is usually tested by estimating, at the city level, the relationship between the change
in population over a specific period and the initial population level. If the estimated

correlation coefficient is not statistically distinguishable from zero this would be consistent

43We drop countries with less than 10 cities larger than 100,000 to avoid estimated relationships that
are too imprecise. However, below each sub-figure we report the mean and standard deviation of the
within region estimated slope coefficient, both for the plotted subsample as well ad for the entire sample
of countries.
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with Gibrat’s Law.

Using BEAM, Table reports the estimates of this relationship for the four countries
analyzed by Chauvin et al.| (2017)). Specifically we report the correlation between the (log)
population in the first BEAM year (2000) and the population growth between 2000 and
2010.@ In all cases, except Brazil, the estimated coefficient is negative, suggesting that
smaller cities grew faster in population during the decade-long period. The coefficient is

statistically significant for China and India.

Table reports equivalent estimation results for each one of the seven world regions.
Consistent with the findings pertaining Zipf’s Law, which precluded an interpretation
favoring the primacy of large cities, the estimated coefficient is, in all cases, negative

(and statistically significant in all cases except ECA and LAC).

5 CONCLUSION

Data-driven spatial definitions of the size and growth of urban areas face a trade-off
between the precision of estimates and the empirical practicality of the estimation pro-
cess, mainly given by computational demand. In general, highly precise measures imply
low empirical practicality. The measure and dataset introduced in this paper offer a
very precise estimate (at least when compared to other existing databases) that is also

computationally tractable, as well as transparent and replicable.

We use nighttime light satellite data, that we pre-process using various existing correction
procedures, to estimate the size of urban areas in the entire world. We also merge our
data with existing geo-referenced population datasets to compute various comparable
measures at the city level, including the size of cities, urban population and population

density.

The result is a comprehensive dataset of global metropolitan areas greater than 100,000
people in two time periods, 2000 and 2010. Because our measures are comparable for
cities of all the world’s regions, and are thus independent of the level of development and
of administrative definitions, the dataset allows us to revisit some of the basic stylized
facts about urbanization in the world. For instance, we compute the statistics necessary
to describe the size distribution of cities across the different regions of the world, and test
Zipf’s Law and Gibrat’s Law.

We find that, in most of the world’s regions (and regardless of the level of development)

cities ranked after the largest urban areas have populations greater than what it is pre-

44To that end, we keep a balanced sample of cities, dropping from the estimation sample cities that
were smaller than 100,000 in 2000 (and thus were not included in the dataset) but larger than the
threshold in 2010 (thus making it into the dataset).
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dicted by Zipf’s Law. Consistent with this, when testing Gibrat’s Law we find a negative
association coefficient between the initial population in 2000 and the population growth
from 2000 to 2010 at the city level, implying that smaller cities grew faster in population
during the first decade of the XXI century.

The future of remote sensing tools and nighttime light appears to be promising as an
increasing number of satellites become available to follow human migration and urban
built-up patterns. DMSP nighttime light data comes with several measurement pitfalls,
but recently launched satellites with new sensors are incorporating new technology, in-
cluding multi-spectral bands to capture land use, radiometrically calibrated images to
solve light saturation problems to analyze highly luminous areas in a reliable way, and
higher levels of spatial resolution to increase the accuracy of delineating urban expan-
sion, size and shape. The urban economics literature is already moving towards exploiting
these type of datasets, that permit better cross and within countries comparable analyses.

BEAM is an example of such datasets.
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Figure 1: City size distribution by region
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Note. The box of the box plot shows the 25, 50 and 75 percentiles. The vertical lines show the minimum
and maximum values, excluding outliers. Outliers are those point values 1.5 times larger (or smaller)

than the maximum (or minimum).
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Figure 2.1: Zipf’s Law by country, 2010
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Figure 2.2: Zipf’s Law by region, 2010
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Figure 2.3: Zipf’s Law [ estimator by world regions, 2010
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Table 1: Estimated number of cities by region

2000 2010
Cities Percent Cum. Cities Percent Cum.
(1) (2) 3) ) () (6)
East Asia & Pacific 691 25.8 25.8 831 27.1 27.1
Europe & Central Asia 47 27.9 53.7 707 23.0 50.1
Latin America & Caribbean 334 12.5 66.2 395 12.9 63.0
Middle East & North Africa 198 7.4 73.6 248 8.1 71.1
North America 213 8.0 81.6 230 7.5 78.6
South Asia 367 13.7 95.3 459 14.9 93.5
Sub-Saharan Africa 127 4.7 100 202 6.5 100
Total 2,677 100 3,072 100

Notes. Cities with more than 100,000 inhabitants or larger. Countries classified following World Bank’s regional classifica-

tion.

Table 2.1: Share of people living in urban areas of different size, by country

Area of Population Total
100 k-250k 250k-500k 500k-1M 1M-15M 1.5M+4 inareas 100 K+ population
1) 2 3) (4) (5) (6) (M)
2000
United States 5 6 6 4 47 191 280
Brazil 4 6 6 2 27 76.3 171
China 3 3 3 2 11 273 1260
India 2 2 2 2 13 217 1010
2010
United States 4 6 6 3 53 218 305
Brazil 5 5 5 2 35 103 199
China 3 3 4 2 20 426 1320
India 2 2 2 2 15 279 1170

Notes. Columns (1) to (5) expressed as a percent of the total population of a country in column (7). Column (6) represents

the total urban population in cities with at least 100,000 inhabitants. Population estimated using BEAM and Landscan

georeferenced population dataset.
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Table 2.2: Share of people living in urban areas of different size, by region

Area of Population Total
100 k-250k 250k-500k 500k-1M 1M-15M 1.5M+4 inareas 100 K+ population
(1) 2) 3) (4) (5) (6) (7)
2000
East Asia & Pacific 3 3 3 2 19 600 2020
Europe & Central Asia 7 8 8 5 26 462 848
Latin America & Caribbean 5 6 7 3 29 255 525
Middle East & North Africa 4 6 8 3 44 197 308
North America 5 6 7 4 47 213 310
South Asia 2 2 2 2 13 301 1350
Sub-Saharan Africa 1 2 2 2 8 87.1 617
2010
East Asia & Pacific 3 3 4 2 26 819 2170
Europe & Central Asia 6 7 8 6 28 472 881
Latin America & Caribbean 5 6 6 4 35 329 580
Middle East & North Africa 5 5 8 4 48 254 367
North America 4 6 6 4 52 243 337
South Asia 2 2 2 2 16 397 1570
Sub-Saharan Africa 2 2 2 2 10 143 835

Notes. Columns (1) to (5) expressed as a percent of the total population of a country in column (7). Column (6) represents
the total urban population in cities with at least 100,000 inhabitants. Population estimated using BEAM and Landscan
georeferenced population dataset. Countries classified following World Bank’s regional classification.

Table 3.1: Zipf’s Law by country

2000 2010

Zipt’s Law Cities Zipf’s Law Cities

(1) (2) (3) (4)

United States -0.85 188 -0.81 201
Brazil -0.96 97 -0.91 115
China -1.03 460 -0.96 534
India -0.91 271 -0.92 344

Notes. (log) Urban population and (log) rank in 2010. Regression point estimates and standard errors based on (Gabaix
& Ibragimovl|[2011)) following a shifted rank, i.e. rank - 1/2. For each country, Zipf’s coefficients are statistically significant
to the 1% level.
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Table 3.2:

Zipf’s Law by region

East Asia & Pacific

Europe & Central Asia
Latin America & Caribbean
Middle East & North Africa
North America

South Asia

Sub-Saharan Africa

2000 2010

Zipt’s Law Cities

(1) (2)

Zipf’s Law Cities
(3) (4)

-0.96 691 -0.92 831
-1.06 747 -1.03 707
-0.95 334 -0.93 395
-0.96 198 -0.94 248
-0.85 213 -0.81 230
-0.91 367 -0.90 459
-0.92 127 -0.95 202

Notes. (log) Urban population and (log) rank in 2010. Regression point estimates and standard errors based on (Gabaix

& Ibragimovl|[2011) following a shifted rank, i.e. rank - 1/2. For each country, Zipf’s coefficients are statistically significant

to the 1% level. Countries classified following World Bank’s regional classification.

Table 4.1: Gibrat’s Law by country

USA BRA CHI IND
(1) (2) (3) (4)
2000-2010 -0.025  0.183  -0.163* -0.089%**
(0.024) (0.217) (0.090)  (0.027)
Constant 0.446  -1.996 2.598**  1.603***
(0.299) (2.655) (1.227)  (0.352)
R-squared 0.014  0.026 0.008 0.027
No of observations 166 90 372 239

Notes. All columns report the point estimate on the regression of the (log) population in 2000 on the (log) change in urban

population from 2000 to 2010 of cities with at least 100,000 inhabitants. Robust standard errors are shown in parentheses.

ok sk

is significant at the 1% level, ** is significant at the 5% level, * is significant at the 10% level.
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Table 4.2: Gibrat’s Law by region

East Asia Europe Latin America  Middle East North South  Sub-Saharan
& Pacific & Central Asia Caribbean & North Africa America Asia Africa
(1) (2) 3) (4) () (6) (7)
2000-2010 -0.310** -0.124 -0.002 -0.101%** -0.039  -0.074** -0.278**
(0.156) (0.113) (0.062) (0.029) (0.024)  (0.037) (0.111)
Constant 4.841%* 1.666 0.277 1.584%%* 0.590%  1.313*** 4.247FF%
(2.230) (1.537) (0.764) (0.380) (0.306)  (0.465) (1.507)
R-squared 0.003 0.001 0.000 0.058 0.027 0.010 0.049
No of observations 535 649 312 172 191 328 124

Notes. All columns report the point estimate on the regression of the (log) population in 2000 on the (log) change in
urban population from 2000 to 2010 of cities with at least 100,000 inhabitants. Countries classified following World Bank’s

regional classification. Robust standard errors are shown in parentheses. *** is significant at the 1% level, ** is significant

at the 5% level, * is significant at the 10% level.
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A APPENDIX: CROSS-VALIDATION OF BEAM’S CITY MEASUREMENT

How does BEAM’s city size estimates compare to other measures? Figure shows the
BEAM-estimated urban sprawl of Chicago in the U.S., Sao Paulo in Brazil, Wuhan in
China, and Pune in India in 2010, and compares them to the sprawl identified by the
AUE (described in section 2.1, see (Angel et al[2012)). Figure further adds the 2018

Google Earth high-resolution satellite imagery to the comparison.

In 2010, BEAM’s urban extension exceeded that from the AUE, except for the case of
Wuhan. Two reasons explain the difference. First, by focusing on continuous built up area
the AUE seems not to consider the formation of metropolitan areas in which the contiguity
of two cities contains suburban areas of at least one of them. Sao Paulo, for example,
shows a night light continuum with Campinas, Idaiatuba and Itu (to the northwest of
the city of Sao Paulo), but AUE only takes into account the main metropolitan area.
Similarly, Chicago and Milwaukee reflect an interconnected market measured by city
night light continuity: the northern suburbs of Chicago constitute a continuum with
the southern suburbs of Milwaukee. Indeed, many workers in south Milwaukee work in

northern Chicago.

From the point of view of the proposed conceptual definition of cities, namely the spatial
integration of social and economic activity, these unions make sense to the extent that,
over time, Sao Paulo, Chicago, and many other cities in the world have expanded to the

point of sharing markets with their neighboring towns.

For the case of Wuhan, when comparing with Google Earth we notice in Figure [A
that BEAM follows the continuous construction pattern even more tightly than the
urban footprint defined by AUE. As exemplified by Wuhan (and also by Chicago), this
implies that the sacrifice in terms of accuracy of using nighttime luminosity does not
seem significant, as it follows closely the urban footprint patterns suggested by Google.
In other cases (such as Sao Paulo and Pune), BEAM is less accurate by extending the
main city to encompass neighboring regions. However, one has to weight this with the

computational efficiency gain of BEAM.

Beyond these concrete examples, it is possible to make a systematic comparison between
BEAM’s full sample of cities and the universe of cities from AUE in the year 2000. In
particular, Figure presents a Spearman correlation coefficient to get a sense of the
strength and direction of the association between the city size rank of the two measures.
The resulting correlation is very large (0.74), and we also reject the null hypothesis
that the two city size ranks come from independent distributions (significant at the 1%
level). Thus, despite of the cardinal differences, the two sources generate similar ordinal

results. In other words, while BEAM’s sprawl usually exceeds that of AUE because of

31



the consideration of suburban areas and peripheral urban slums, the city size ranking is,

by and large, maintained.

Finally, we compare the BEAM-estimated U.S. metropolitan areas to the MSAs defined
by the United States Office of Management and Budget in 2010 (see Figure . Al-
though not legally constituted as administrative divisions, MSAs constitute a reference
for the identification of metropolitan areas in the U.S.; and are used for several statistical
purposes. Out of the 383 MSAs defined for 2010, BEAM identifies 358 cases, and so
the level of coincidence is 94%. The 6% discrepancy is explained, mostly, by the exis-
tence of MSAs with metropolitan areas with less than 100,000 inhabitants, the threshold
established by BEAM.

Figure A-1: City sprawl: AUE and BEAM in 2010
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Note. The green area shows the urban sprawl as estimated by the Atlas of Urban Expansion (AUE).

The red line follows BEAM’s city size. Gray lines represent each country’s lowest administrative unit.
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Figure A-2: City sprawl: AUE, BEAM and Google Earth, 2010

Chicago, The Unite States

San Pablo, Brazil

‘Wuhan, China Pune, India

Note. The yellow line shows the urban sprawl as estimated by the Atlas of Urban Expansion (AUE) in
2010. The red line follows BEAM’s city size in 2010. The Google satellite image was taken in August
23th, 2018.
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Figure A-3: Population rank comparison: BEAM and AUE in 2000
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The graph shows the quantile to quantile comparison of city size (population) rank for the
Atlas of Urban Expansion and BEAM. Spearman’s rho rank is included, and shows that the

null hypothesis of independent distributions is rejected with a significance level of 1%.
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Figure A-4: BEAM'’s city coverage compared to Metropolitan Statistical
Areas of the United States in 2010

[ 1 BEAM's cities, 2010
[ 1 MSAs intersected with BEAM, 2010
Il MSAs not intersected with BEAM, 2010

Note. Metropolitan Statistical Areas (MSAs) from the United States Population Census, 2010. Green
polygons represent BEAM’s; yellow polygons are MSAs that coincide withBEAM’s urban sprawl
database, while red MSAs are those not considered by BEAM’s database. .
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